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The presence and stability of mixture states in Q-state Potts neural networks are studied for different
learning rules within the replica-symmetric mean-field-theory approach. The retrieval properties of the
asymmetric mixture states are examined in the case of biased patterns. For the storage of a finite num-
ber of such patterns, these properties are compared for the usual Hebb learning rule and some variants
obtained by subtracting, for a certain pattern, the average of the Potts neuron state over all the other
patterns. The latter are introduced to suppress the symmetric mixture states. Furthermore, the embed-
ding of an additional, infinite number of unbiased patterns stored with the Hebb rule is allowed. The
storage capacity and the temperature-capacity phase diagram are discussed in these cases. A detailed
analysis is made for the Q =3 model and two classes of representative bias parameters.

PACS number(s): 87.10.+e¢, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

Neural networks with multistate neurons based upon
the Q-state Potts-glass model have been analyzed in order
to study, e.g., the storage and retrieval properties of
gray-toned patterns. For an overview of the recent litera-
ture in this respect, we refer to Ref. [1]. In that paper a
systematic treatment of the Mattis retrieval states and the
symmetric mixture states for Q-state Potts neural net-
works with biased patterns and a Hebb learning rule, in-
volving the bias parameters, has been given.

In general, for the storage and retrieval of (statistically)
correlated patterns, the mixture states are important
since the state of the network must have a nonzero over-
lap with all the patterns. As a first step towards this
problem this type of states can be analyzed for biased
(i.e., statistically independent but effectively correlated)
patterns. The symmetric mixture states describe the ina-
bility of the network to perceive the details distinguishing
the different patterns and hence should be suppressed.
This can be done by different methods, e.g., a global dy-
namic constraint, an adjustable uniform field, a different
learning rule (see, respectively, [2—4] for the Hopfield
model). Some of the asymmetric mixture states, however,
describe the retrieval behavior of the network. Hence a
detailed study of these different mixture states for
different learning rules appears to be interesting.

In the present work we consider symmetric and asym-
metric mixture states and the storage of biased patterns
for the Q-state Potts network with the usual Hebb rule
and some variants obtained by subtracting, for a certain
pattern, the average of the Potts neuron state over all the
other patterns. These variants of the Hebb rule will have
the property to suppress the unwanted symmetric mix-
ture states. Since the treatment of biased patterns in
Potts networks is rather involved and tedious (see, e.g.,
[1]), we restrict ourselves here to the storage of a finite
number of biased patterns in combination with an infinite
number of unbiased patterns. Analog problems have
been studied for the Hopfield model: mixture states for
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low loading have been considered in [4] for the Hebb
learning rule and some other local learning rules; in [5]
mixture states for extensive loading have been discussed
for the Hebb rule.

The rest of this paper is organized as follows. In Sec.
IT the model is introduced. Section III discusses, within
mean-field theory, the low loading of biased patterns for
the usual Hebb learning rule and its modifications intro-
duced above. The possible types of solutions of the
fixed-point equation for the overlap are determined and
their stability is analyzed. The retrieval behavior as a
function of the bias for the different learning rules is com-
pared explicitly and temperature-bias stability diagrams
are studied for some representative Q =3 models. In Sec.
IV an extensive loading of patterns is considered whereby
a finite number of biased patterns is learned with the
different rules discussed before and the rest is learned
with the usual Hebb rule. Replica-symmetric fixed-point
equations for the order parameters are written down for
general Q and arbitrary temperature 7. The retrieval
quality and the storage capacity a at zero temperature
are discussed as functions of the bias and T-a phase dia-
grams are analyzed in detail for the Q =3 models intro-
duced in Sec. III. Finally some conclusions comparing
the different learning rules are drawn in Sec. V.

II. MODEL

Consider a system of N neurons. Each neuron can be
described by a Potts spin o0;€{1,2,...,0},
i=1,2,...,N. The neurons are interconnected with all
the others by a synaptic matrix of strength J,-’J‘-’ which
determines the contributions of a signal fired by the jth
presynaptic neuron in state / to the postsynaptic potential
which acts on the ith neuron in state k. The energy po-
tential 4 o, of neuron i which is in a state o; is given by

N o0
hi,ai=_ 2 E

ki

J u u (1
S iy ket )
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=
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with u the Potts spin operator defined as
a,szao’i,k_l . (2)

The dynamics of the Q-state Potts model is defined as
in [6]. At zero temperature the state of the neuron in the
next time step is fixed to be the state which minimizes the
induced local field (1). The stable states of the system are
those configurations {o;} where every neuron is in a state

which gives a minimum value to {4;, }. For symmetric
couplings, i.e., J;; k=g Jl,k, this stability is equivalent to the
requirement that the configurations {o;} are the local

minima of the Potts Hamiltonian

N 2
—_1
H= 2 2 2 Ij a N 9; e (3)
l,_]=1k =1
i)

In the presence of noise there is a finite probability of
having configurations other than the local minima. This
can be taken into account by introducing an effective
temperature T =1/8.

To build the capacity for learning and memory in this
network, its stationary configurations representing the re-
trieved patterns must be correlated with the stored pat-
terns {&#}, u=1,2...,p, fixed by the learning process.
These patterns are chosen to be independent random

variables. We allow p of these patterns to be biased, i.e.,
those {£#} can take the values 1,2, ..., Q with probabili-
ty

1+B,
P(gt=k)= o

k=1,2,...,0, p=12,...,5 @

where the {B,} are the bias parameters. Since the P (k)
are probabilities, the { B, } satisfy
Q
—1=B,=Q—1, 3 B,=0. (5)
k=1
The other (p —p) patterns are unbiased.

This model, with p=p, has been studied in [1,7] with
the learning rule

J/Jd‘“ Q2N 2 (ugﬂk B, )u, ,—Bj) . (6)
In particular the Mattis retrieval states and the lowest
symmetric states have been analyzed.

In the following we study the possible relevance of the
mixture states in Potts-glass networks with different
learning rules for the retrieval of correlated patterns in
the sense described above.

III. LOW LOADING OF BIASED PATTERNS

A. Mean-field theory

We consider the storage of a finite number 7 of biased
patterns with the following learning rules:
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JH= U, K —— u,,
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For v =w =0 we find back the Hebb learning rule. For
v =0,w70 or v#0,w =0 the learning rule mixes in all
the other patterns by subtracting in one of the terms the
average of the Potts operator over these patterns. Both
rules we get in this way are identical. For v,w0 this
average is subtracted in both terms.

First, we remark that in the limit p — oo, this subtrac-
tion becomes equal to the bias B, and B; such that the
learning rule (7) for v =w =1 becomes the rule (6).
Second, the following scaling relation is valid:

T =1,0=1)=—L—JKw =1,w=0) . (8)
p—1
So in the following the rules for v=w=1 and
=1,w =0 can be treated together.

For these interactions we calculate the free energy us-

ing the method in [8]. The result is

f=1 § v § w %
=1 m,—— m, | |m,— m,
2u=1 # ﬁ_l v=1 # ﬁ_—l v=1
vER vFER
—i«xni s exp[Bﬂg(é')]» ©)
B Q o=1
with #,(&) given by
? vtw 2
H 8= Ugy , My I > m,
v=1 p r=1
YFEY
+— 2 2 m,+h, (10)
(p "1) y=1 p=1
YFEV uFy
and h, the couplings of the external field terms. Here

{{ )) denotes the average over the p biased patterns.
The order parameter m, representing the overlap with
the vth pattern ie.,

=— 2 «(u

1=1

PR DN (11)

g

where { ) stands for the thermal average, satisfies the
fixed-point equation

Sy, explBH,(8)]
mV:<< - geXp[Bﬂa@)] » '

(12)

These fixed-point equations allow for the following
types of solution. In the case v =w =0 there exist a solu-
tion m=0 representing the disordered state. There are
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no Mattis solutions m=(m,0, ...,0) and no symmetric
solutions of the form m=(m,,...,m,,0,...,0), n <p.
However, symmetric solution of the form
m=(mp, cee, mp) do exist. They are unwanted because
they represent confusion of the neural network. Finally
there exist asymmetric solutions, some of which have re-
trieval properties, i.e., m=(m1,mp_1, - ,mp_l) with
my;>m;_,. In the following we only discuss the
retrieval-like asymmetric solutions.

For v =w =1, the only solutions that are present, com-
pared with the Hebb rule, are the m =0 solution and the
asymmetric retrieval-like solutions. This is also true for
v=1,w=0and v =0,w =1.

B. Results for the Hebb rule (v =w =0)

For general Q a signal-to-noise ratio analysis indicates
that retrieval may be possible if

2 <@-1 (13)
p—1
The m =0 solution exists for all temperatures and it be-
comes stable above

T= Q—1+(p—1)——EBk. (14)
Q=
For the symmetric solutions, an expansion of the
fixed-point equation (12) in m, leads to
m, =B

Q—1+(p ZBk

+%Bz{(Q—l)(Q—2)+3 pP—10Q —2)— 23,(
k—l

+(p—1)p m;+0(mj) .

E B}
Q=
(15)

This tells us that the critical temperature is given by (14).
Furthermore an inspection of the coefficients in m? (and
m?3 for Q =2) shows that the transition to the m=0 solu-
tion is first order for Q =3 and second order for Q =2.
The latter is in agreement with the results of [4].

At T =0 the value of m, is given by

P
mp:é«maxk > ugv’k» . (16)
v=1

This result is in agreement with [4] (Q =2) and [7] (zero
bias).

The study of the stability properties requires a detailed
investigation of the eigenvalues of the stability matrix.
This has been done analogously to [7]. The analysis de-
pends on the number of biased patterns and on the
specific bias structure. Results will be described for the
specific Q@ =3 models at the end of this subsection.

Concerning the asymmetric solutions, we have restrict-

ed ourselves to the form m=(m,,m my ) I

-1 -
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we require retrieval-like properties, i.e., m, >m,_,, we
find that for T =0
— _ 1
ml_Q_L mﬂ_l—agB}?; (17)

provided the condition (13) is satisfied. This solution
represents perfect overlap with one of the patterns. Also
the stability properties of these asymmetric solutions
have been studied. We present more detailed results for
the specific Q =3 models introduced next.

As an illustrative example a Q =3 network is worked
out for two representative classes of bias types, i.e.,
B,=a(2,—1,—1) and B,=a(1,0,—1) with a€[0,1].
The first bias type indicates that one state is privileged
and the other two states have equal probability to appear.
In fact, for @ =1 the probability distribution for the pat-
terns is such that the lowest state has probability one.
This means that there is no freedom left for the neuron.
In the other case all three states have different probabili-
ty.

In Figs. 1 and 2 we present a T-a diagram for p=2,3,4
biased patterns in the B, and B, model. For all T and a
there exist a m=0 solution which is stable above the
curve given by (14) for Q =3. Between the dashed and
the dotted line the symmetric solutions exist and are
stable. Below the dotted line they exist, but they are un-
stable. Below the solid line the retrieval-like asymmetric
solutions exist and are stable. We remark that for a =0
the temperature below which these states are stable is
T =2.18, exactly as for the Mattis retrieval states in the
unbiased Potts model [9]. For increasing p, the stability
region for the symmetric solutions becomes larger and
the stability region for retrieval-like asymmetric solutions
becomes smaller. We remark that at T =0 retrieval is
only possible for certain values of the bias amplitude a in
agreement with condition (13).

In view of these results the B, model has better re-
trieval properties than the B; model. Comparing with

3.0 1 I’ 1
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FIG. 1. The T-a diagram for the Q =3 B; network with
v=w =0 and p=2,3,4 biased patterns for a=0. The dashed
and the dotted (solid) curves concern the existence and stability
of the symmetric (asymmetric) solutions.
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FIG. 2. Same as Fig. 1, but for the Q =3 B, network.

the Hopfield model (see [4], Figs. 1 and 2) we find no
difference between the stability properties of even and
odd symmetric states: the symmetric states are never
stable in the low-temperature regime.

M=py—t—|0—1—-— 3 B |M
Byp‘—l Q Qk§1 P
1?22 (o 1)@ —2)+3(0 —2)~
(F—1) Q

From (20) we find a critical temperature given by (19).
Furthermore the order of the transition to the m=0 solu-
tion not only depends on Q but also on p. For =2 the
coefficient of M? is zero such that we have to look at the
coefficient of M3 This coefficient is given by
18?0 Q —6)(Q —1—3,B}/Q). Hence the transi-
tion is second order for Q <6 (for Q =6 an inspection of
the M* and M? terms has been done) and first order for
Q > 6. For p > 2 this transition is second order for Q =2
and first order for Q = 3.

At T =0 the retrieval-like solution is explicitly given
by

1+B, |”
m1=(Q—1) 1_2 ’
A )
@1
Lspi—g-13 |2k ’
m = - -
LN e

This does not represent perfect retrieval, but for growing
P the value of m, tends to (Q —1) and the value of m,_,
tends to 3, B?/Q. We remark that these values do not
depend on the scaling parameter .

We now turn to the specific Q =3 models discussed be-
fore. Figures 3 and 4 show a T-a diagram for p=3,6,9
patterns. Below the solid lines the retrieval-like asym-
metric states exist and are stable. For increasing p this
curve tends to the dashed curve, i.e., the curve below

Q
S Bi+
k=1
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C. Results for the generalized Hebb rule (v =w =1)

For general Q a signal-to-noise ratio analysis gives
Lspi<o—1 (18)
Q%

and hence there is no extra condition on the bias parame-
ters besides (5).

The m =0 solution exists for all temperatures and it be-
comes stable above

ol Qo
T=y—E_l(@g-1-1 3 B?|. (19)
r—1 Q=
Here y=p/(p —1). For the v =1,w =0 model we have
to take ¥ =1 according to the scaling property (8) of the
learning rules.

As mentioned before there are no symmetric solutions.
For the retrieval-like asymmetric solutions an expansion
of the fixed-point equation (12) written in terms of
M=m, —m,_, gives

Q
2_L <5 pilm+om?). (20)
P—1) €=

f

which the Mattis states of the biased Potts model with
learning rule (6) are stable [7]. We remark that there is
an instability region for the latter (dotted curve in Fig. 3)
as well as for the B; model discussed here (dash-dotted
curve in Fig. 3). This region for the B; model grows with
increasing p and is only visible on the scale of Fig. 3 from

FIG. 3. The T-a diagram for the Q =3 B, network with
v=w =1 and p=3,6,9 biased patterns for a=0. The solid and
dash-dotted (dashed and dotted) lines represent the stability re-
gion for the asymmetric solutions (Mattis solutions for the Potts
model [7]).



2254 D. BOLLE AND

1.0

FIG. 4. Same as Fig. 3, but for the Q =3 B, network.

P =9 onwards. Furthermore for a =1 the temperature
stays different from zero for the B, model. Finally the re-
trieval stability region for p =2 is bounded by (19), which
leads to similar curves as shown in these figures, but
starting at T =4vy,a =0 and ending at T =0,a =1 for the
B, model or T'=8y /3,a =1 for the B, model.

In comparison with the Hebb learning rule (v =w =0)
we not only have that there are no symmetric solutions
but also the retrieval region is much larger. The latter is
also true when comparing with the Hopfield model where
the temperature lines are given by [see (19)]

p

T=y—F—(1-a?) . (22)

IV. EXTENSIVE LOADING
OF BIASED AND UNBIASED PATTERNS

A. Replica symmetric mean-field theory

In this section we consider an extensive loading of p
patterns {&*}, u=1,...,p, of which a finite number p

2 v P w P
f——fz m,—— zmv m,—— Emv
p=1 p—1 .5 p—1 5

v vER

1 1
%ln[l—B(Q—1—q)]+73qr(Q—1)——B-<<fR

with the Gaussian measure Dz given by

Q
Dz= [ dz;(2m)” "/
k=1

Here #,(§,z) reads

Zexp(—z2/2) .

v+w

p—1

v

Q )4
HAEZ)=Var/Q 3 uj.zi+ 3 Ugr, My~
I=1 v=1 "~
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are biased and the rest p —p is unbiased. We are only in-
terested in the condensation of the biased patterns.
The synaptic couplings are given by the learning rule

b M | TR
Q Nu=1 gi’k ~ "
v#p
p
X, =7 X U,
1 p—15 %
vEuR
1 p
0N w§+lu§f"’ku§§"1' (23)
=

In comparison with (7) the biased patterns are stored as
before and the unbiased patterns are stored with the
Hebb rule. We note that the remarks about the possible
values of v and w after (7) remain valid. The scaling rela-
tion (9) no longer holds.

We introduce the following order parameters:

‘V

(24)

[

N
}_‘, Kug  IN

1
N ;

which is the macroscopic overlap with a condensed pat-
tern, and

33 (4 o),

which is the Edwards-Anderson order parameter. Using
then mean-field theory and the replica-symmetric approx-
imation one finds for the free energy, following [7] gen-
eralized to the Potts model,

Q

)

k=1

(25)

1 _ — 1 2., aq
R L T Fo 7,y ey
1 £
QDzln—Q‘ > exp[Bﬂa(é‘,z)]» , (26)
o=1
(27)
/4
> m,+ 2 2 2 m,+h, (28)
y=1 (P'-l y=1 pu=1
y#v YFEV uFEY
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Furthermore 7 is given by
a
r= 5 -
[1-B(Q —1—¢q)]

It can be considered as the total mean-square random
overlap with the noncondensed patterns, i.e.,

(29)

S (m2) (30)

pu=p+1

Q=

with a the storage capacity, i.e., a=p/N. Since we only
consider condensation of the p biased patterns the {( )) in
(26) denote the average over these biased patterns only.

The order parameters satisfy the following fixed-point
equations:

ot , explBH,(§,2)] »

mv=<<fRQDz >, exp[BH ,(&,2)] (31)
_1 8 S otk o explBH,(£,2)] |
10 2, << JoP? |75, exolp7. (6] » » 82

together with (28) and (29). In the case v =w =0, these
fixed-point equations have the following types of solution:
asymmetric solutions m=(m1,mp_1, cees My,
0,...,0), g0, some of which have retrieval properties
(m, >>mﬁ_1); symmetric solutions m=(mp, ceesMy,
0,...,0), g0, representing confusion in the network;
spin-glass solutions m=0,¢+0 and a paramagnetic solu-
tion m=0,g =0. There are no Mattis solutions
m=(m,0, ...,0) and no symmetric solutions of the form
m=(m,,...,m,,0,...,0) with n <p.

For v =w =1, the only solutions that are present, com-
pared with the Hebb rule, are the paramagnetic, the
spin-glass, and the asymmetric retrieval-like solutions.
This is also true for v =1,w =0and v =0,w =1.

B. Results for the Hebb rule (v =w =0)

In this subsection we restrict ourselves to a study of a
Q =3 network for the two classes of bias types
B,=a(2,—1,—1) and B,=a(1,0,—1), introduced in
Sec. III B.

Figures 5 and 6 show the storage capacity a, at T =0,
for both models with p=2,3,4 biased and p-p unbiased
patterns as a function of the bias amplitude a. There al-
ways exist spin-glass solutions. Besides there exist sym-
metric solutions below the dashed line and there exist
asymmetric retrieval-like solutions below the solid line.
All transitions at these lines are of first order. We note
that at a =0 the critical storage capacity for the asym-
metric retrieval states is a,.=0.415, such as for the
Mattis retrieval states in the unbiased Potts model [6].
These figures show that the retrieval region becomes
smaller and that the region where the symmetric solu-
tions exist grows with increasing p. Furthermore at a=0
retrieval is only possible for certain values of the bias am-
plitude a in agreement with condition (13).

Comparing both the B, and the B, case one sees that
the storage capacity of the asymmetric states is always
the largest for the B, model (a#0). Furthermore the
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FIG. 5. The a-a diagram for the Q =3 B,; network with
v=w =0 and p=2,3,4 biased patterns at T'=0. The solid
(dashed) curve concerns the existence of the asymmetric (sym-
metric) solutions.

storage capacity of the symmetric states grows slower, as
a function of a, for the B, than for the B; model. To get
a more specific idea we list these storage capacities at
a=1: for the B; model a=2.30 (p=2), a=6.40
(p=3), and a=12.91 (=4); for the B, model
a=0.38 (p=2), a=0.80 (p =3),and a=1.43 (g =4).
For T#O0, the T-a phase diagrams for the Q =3 B, and
B, models with p =3 at @ =0.4 are shown in Figs. 7 and
8. The line T, (dash-dotted line) indicates the transition
from the spin-glass solution to the disordered paramag-
netic state. This line can be calculated analytically for
general Q: T,=Q —1+Va(Q —1). For Q <6 this tran-
sition is always second order, but for Q > 6 we find that if
a<ay=16(Q —1)(Q —6)72 the transition is second or-
der, while for a > a, the transition is first order [10]. Re-
turning to Q =3 we find that below Ts (dotted line) sym-
metric solutions show up as local minima of the free ener-
gy and below T, (solid line) the asymmetric retrieval
solutions appear as local minima of the free energy.
Below T, (dashed line) the asymmetric retrieval solutions
become global minima of the free energy. The transitions
at the Tg, T., and T, lines are first-order transitions

FIG. 6. Same as Fig. 5, but for the Q =3 B, network.
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FIG. 7. The T-a diagram for the Q =3 B, network with
v =w =0 and p =3 biased patterns and p-p unbiased patterns at
a =0.4. The meaning of the curves is explained in the text.

while for the analog Q =2 problem the transitions from
both the symmetric and the spin-glass solutions to the
paramagnetic solution are second order [5]. For decreas-
ing a the retrieval region becomes larger and the region
for existence of the symmetric states shrinks. For @ =0
we find back the phase diagram for the unbiased Potts
model [10] with the line 7, now indicating the stability
of the Mattis retrieval states.

Finally we remark that the T,T,, and T, transition
curves have a negative slope at low temperatures suggest-
ing the breaking of the replica symmetry approximation
(see also [10] for the Potts model with learning rule (6)
and [11] for the Hopfield model). The difference between
the maximal value of a and its value at T'=0 is the larg-
est for the symmetric solutions. To get a more quantita-
tive idea about this breaking we have calculated the en-
tropy at T=0. For the B, model we find at a=a_ for
the symmetric states Sy, = —0.72X 107!, while for the

asymmetric states we have S, =—0.46X 1072 For
the B, model the corresponding values are
Sym=—0.46X10"1,S,  =—0.41X10"2 This sug-

gests a breaking that is stronger for the symmetric solu-
tions.
C. Results for the generalized Hebb rule (v =w =1)

For general Q the fixed-point equations (31), and (32)
for the asymmetric retrieval-like solutions can be written
in terms of M =m —m,_ and q. At T =0, they can be
further reduced to only one fixed-point equation in
y=yMV'Q/qr. For p=2 biased patterns an expansion
of this equation for small values of y learns that the tran-
sition from the asymmetric retrieval phase to the spin-
glass phase is second order for Q =<7 and first order for
Q > 7. Furthermore for Q <7, this transition occurs at

__ 0 1 2|1
T 2m@ 1) o 2B

2y ([Q—1—

V2

Xfm dze_zzE(z)Q_Z

(33)

— [T dze 1R (2)0 !
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FIG. 8. Same as Fig. 7, but for the Q =3 B, network.

with K (z)=1[1+erf(z/V'2)], provided that the term in
between the square brackets is positive. Here we recall
that ¥y =p /(p —1), for the v =1,w =0 model ¥ =1. This
implies the following conditions on the bias parameters

f ® dze —(I/Z)ZZZE(Z)Qﬂ

— 0

Y f *.dze A

(34)

Let us now turn to the specific Q =3 B, and B, model.
At T =0, the storage capacity of the asymmetric retrieval
states, for p=2,3,4 biased and (p —p) unbiased patterns
in function of the bias amplitude a is shown in Fig. 9. We
again remark that we have no symmetric states for this
learning rule.

Clearly the capacity diminishes with growing p. At
a=0 we find that retrieval is only possible in a restricted
region of the interval a €[0,1]. This is not supported by
the signal-to-noise ratio analysis (18) and the T-a dia-
grams for =0 (Figs. 3 and 4). Whether this effect is due

T T T =
0.00 025 050 075 1.00
a

FIG. 9. The a-a diagram for the Q =3 B, (solid curve) and
B, (dashed curve) network with v =w =1 and p=2,3,4 biased
patterns at 7" =0.
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FIG. 10. Same as Figs. 7 and 8, but with v =w =1.

to replica symmetry breaking remains to be seen [12].

For finite T, the T-a phase diagram of the v =w =1
model with =3 biased and (p —p) unbiased patterns is
shown in Fig. 10. In the region bounded by the solid lines
asymmetric retrieval-like states exist and they are the glo-
bal minima of the free energy. Below the dash-dotted
line spin-glass solutions appear. Remark that this spin-
glass line is identical to the one in the v =w =0 model.
Hence the transition properties along this line are the
same as before. The transition from the asymmetric to
the paramagnetic solutions at the solid line is first order.

From Fig. 10 we see that introducing bias leads to a
smaller retrieval region. However, the shape of the criti-
cal lines remains nearly the same. The B, model has
better retrieval properties. Also here the transition lines
have a negative slope at low temperatures and the maxi-
mal capacity is reached for T50. This suggests again a
replica-symmetry breaking effect. This is substantiated
by a calculation of the entropy at 7"=0 which gives at
a=a; Spym=—0.1617 for a =0, S, = —0.1507 for

asym
the B; model with a =0.4, and S, = —0.1604 for the
B, model with a =0.4. Compared with the v =w =0
model we find that the entropy S, is more negative,

suggesting a stronger breaking.

V. CONCLUDING REMARKS

In this paper we have studied symmetric and asym-
metric mixture states and the storage of biased patterns
in Potts-glass neural networks. In particular, we have
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discussed the retrieval of a finite number of these patterns
for different learning rules in the possible presence of an
extensive loading of unbiased patterns with the Hebb
rule. Detailed results are presented for Q =3 models
with two representative classes of bias parameters.

For a=0 one concludes that the generalized Hebb
learning rule (v =w =1) leads to asymmetric retrieval
solutions over the whole range of bias amplitudes a. Fur-
ther, it leads to no symmetric solutions. Consequently its
retrieval properties are better than the model with the
usual Hebb rule (v =w =0).

For a0 one sees by comparing the v =w =1 model
(Fig. 9) with the v =w =0 model (Figs. 5 and 6) that the
storage capacity is always substantially larger for the net-
work with the generalized Hebb rule (v =w =1). Thus
modifying the learning rule by subtracting in each term,
for a certain pattern, the average of the Potts neuron
state over all the other patterns enhances the storage
capacity for the biased patterns. It is also interesting to
remark at this point that the effective storage of these
patterns with these learning rules (7) and (23) is possible
without knowing explicitly the bias parameters B,.

The learning rule v =w =1 leads always to a larger
storage capacity than the rule v =1,w =0. The latter
even gives rise to a smaller storage capacity than the
Potts model with learning rule (6). For example, at a =0
and for p=3 one has a.,(v=w=1)=1.806 and
a.(v=1,w=0)=0.355<a.,(v =w =0)=0.415. Similar
results have been found for Q =2. So we conclude that,
in contrast to the v =w =1 learning rule, the v =1,w =0
rule is not able to enhance the storage capacity of the
biased patterns. Moreover the v =w =1 rule always
leads to the largest retrieval region in the T-a plane
(compare Figs. 7 and 8 with Fig. 10).

Finally we have checked that for all learning rules con-
sidered in this work the storage capacity of the unbiased
patterns stays the same as in the Potts model without
bias. So we have not damaged the ability of the network
to retrieve the other patterns.
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